Intelligence artificielle : quel avenir en anatomie pathologique ? - 08/04/19
Neural network: A future in pathology?
pages | 11 |
Iconographies | 6 |
Vidéos | 0 |
Autres | 0 |
Résumé |
Les techniques d’intelligence artificielle et en particulier les réseaux de neurones profonds (Deep Learning) sont en pleine émergence dans le domaine biomédical. Les réseaux de neurones s’inspirent du modèle biologique, ils sont interconnectés entre eux et suivent des modèles mathématiques. Lors de l’utilisation des réseaux de neurones artificiels, deux phases sont nécessaires : une phase d’apprentissage et une phase d’exploitation. Les deux principales applications sont la classification et la régression. Des outils informatiques comme les processeurs graphiques accélérateurs de calcul ou des bibliothèques de développement spécifiques ont donné un nouveau souffle à ces techniques. Leur champ d’application est vaste et permet la gestion de données de masse (Big data) en génomique et biologie moléculaire ainsi que l’analyse automatisée de lames histologiques grâce aux techniques de numérisation réalisées à l’aide de scanners de lames de type Whole Slide Image. Le Whole Slide Image scanner peut acquérir et stocker des lames de microscopie sous forme d’image numériques. Cette numérisation associée aux algorithmes de deep learning permet une reconnaissance automatique des lésions grâce à l’identification de régions d’intérêt, validées au préalable par le pathologiste. Ces techniques d’aide assistée par ordinateur sont testées en particulier en pathologie mammaire et dermatologique. Elles permettront, associées aux données cliniques, radiologiques et de biologie moléculaire, une vision plus globale et performante, et réaliseront une aide au diagnostic en pathologie.
Le texte complet de cet article est disponible en PDF.Summary |
Artificial Intelligence, in particular deep neural networks are the most used machine learning technics in the biomedical field. Artificial neural networks are inspired by the biological neurons; they are interconnected and follow mathematical models. Two phases are required: a learning and a using phase. The two main applications are classification and regression Computer tools such as GPU computational accelerators or some development tools such as MATLAB libraries are used. Their application field is vast and allows the management of big data in genomics and molecular biology as well as the automated analysis of histological slides. The Whole Slide Image scanner can acquire and store slides in the form of digital images. This scanning associated with deep learning algorithms allows automatic recognition of lesions through the automatic recognition of regions of interest previously validated by the pathologist. These computer aided diagnosis techniques are tested in particular in mammary pathology and dermatopathology. They will allow an efficient and a more comprehensive vision, and will provide diagnosis assistance in pathology by correlating several biomedical data such as clinical, radiological and molecular biology data.
Le texte complet de cet article est disponible en PDF.Mots clés : Intelligence artificielle, Réseaux de neurones artificiels, Pathologie numérique, Diagnostic assisté par ordinateur
Keywords : Artificial network, Artificial neural networks, Digital pathology, Computer-assisted diagnosis
Plan
Vol 39 - N° 2
P. 119-129 - avril 2019 Retour au numéroBienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.
Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.
Déjà abonné à cette revue ?